Computer Architecture Midterm

NAME: _____

Read carefully, write legibly, check work, and complete in 1 hour. Good luck!

1 Number representation (20%)

Convert these numbers into the requested base(s).

1. 0o2537336765473326253 in binary, and then from binary to hexadecimal.

2. -1110 (negative one thousand one hundred ten) in binary using two's complement. Show place values.

2 Binary arithmetic (20%)

Perform arithmetic in binary. Show place values and carry bits.

 $1. \quad \begin{array}{c} 101111111111\\ \underline{-\ 11101101} \end{array}$

$2. \quad \frac{1000010001}{+ \ 10011001}$

3 Circuit design (60%)

Given two-bit binary numbers A and B, design a circuit that determines whether A < B. For example, since 1 < 3, when A = 0b01 and B = 0b11, the circuit should output 1.

1. Draw the truth table for this circuit. Label inputs as A_1, A_0, B_1, B_0 . Label the output as F. 2. Implement this circuit using a 4-1 MUX. Label the input and select lines with appropriate variables and expressions.

3. Write out the logic expression for this circuit. Simplify and cite laws.

F =

Law	Form	Dual form
Identity	$a \cdot 1 = a$	a + 0 = a
Identity	$a \cdot 0 = 0$	a + 1 = 1
Commutative	$a \cdot b = b \cdot a$	a+b=b+a
Associative	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$	(a+b) + c = a + (b+c)
Distributive	$a \cdot (b+c) = a \cdot b + a \cdot c$	$a + (b \cdot c) = (a+b) \cdot (a+c)$
Idempotence	$a \cdot a = a$	a + a = a
Absorption	$a + a \cdot b = a$	$a \cdot (a+b) = a$
Complement	$\overline{0} = 1$	$\overline{1} = 0$
Complement	$a \cdot \overline{a} = 0$	$a + \overline{a} = 1$
Involution	$\overline{\overline{a}} = a$	
DeMorgan's	$\overline{a+b} = \overline{a} \cdot \overline{b}$	$\overline{a \cdot b} = \overline{a} + \overline{b}$
XOR	$a \oplus b = \overline{a} \cdot b + a \cdot \overline{b}$	
XNOR	$\overline{a \oplus b} = \overline{a} \cdot \overline{b} + a \cdot b$	

4 Laws of Boolean algebra

5 Bonus (5%)

Using DeMorgan's law, show how $\overline{\overline{a} \cdot b + a \cdot \overline{b}}$ simplifies into $\overline{a} \cdot \overline{b} + a \cdot b$.