Computer Architecture Midterm

NAME: \qquad

Read carefully, write legibly, check work, and complete in 1 hour. Good luck!

1 Number representation (20\%)

Convert these numbers into the requested base(s).

1. 002537336765473326253 in binary, and then from binary to hexadecimal.
2. -1110 (negative one thousand one hundred ten) in binary using two's complement. Show place values.

2 Binary arithmetic (20\%)

Perform arithmetic in binary. Show place values and carry bits.

1. 101111111111
2. $\quad-11101101$
3. $\quad 1000010001$

3 Circuit design (60\%)

Given two-bit binary numbers A and B, design a circuit that determines whether $A<B$. For example, since $1<3$, when $A=0 b 01$ and $B=0 b 11$, the circuit should output 1 .

1. Draw the truth table for this circuit.

Label inputs as $A_{1}, A_{0}, B_{1}, B_{0}$. Label the output as F.
2. Implement this circuit using a 4-1 MUX. Label the input and select lines with appropriate variables and expressions.

3. Write out the logic expression for this circuit. Simplify and cite laws.
$F=$

4 Laws of Boolean algebra

Law	Form	Dual form
Identity	$a \cdot 1=a$	$a+0=a$
Identity	$a \cdot 0=0$	$a+1=1$
Commutative	$a \cdot b=b \cdot a$	$a+b=b+a$
Associative	$(a \cdot b) \cdot c=a \cdot(b \cdot c)$	$(a+b)+c=a+(b+c)$
Distributive	$a \cdot(b+c)=a \cdot b+a \cdot c$	$a+(b \cdot c)=(a+b) \cdot(a+c)$
Idempotence	$a \cdot a=a$	$a+a=a$
Absorption	$a+a \cdot b=a$	$a \cdot(a+b)=a$
Complement	$\overline{0}=1$	$\overline{1}=0$
Complement	$a \cdot \bar{a}=0$	$a+\bar{a}=1$
Involution	$\overline{\bar{a}}=a$	
DeMorgan's	$\overline{a+b}=\bar{a} \cdot \bar{b}$	$\overline{a \cdot b}=\bar{a}+\bar{b}$
XOR	$a \oplus b=\bar{a} \cdot b+a \cdot \bar{b}$	
XNOR	$\overline{a \oplus b}=\bar{a} \cdot \bar{b}+a \cdot b$	

5 Bonus (5\%)

Using DeMorgan's law, show how $\bar{a} \cdot b+a \cdot \bar{b}$ simplifies into $\bar{a} \cdot \bar{b}+a \cdot b$.

